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and

Rt —2(1 4+ Byl + BTy, = — (uf‘IfjJruf‘*,‘]) (4.1.14b)

Here (4.1.14a) and (4.1.14b) are solved implicitly in the x-direction and y-direction,
respectively. The relaxation parameter o may be introduced to accelerate the
convergence

k+ k k k+5
wi; =21+ By, *2 + wu ,If, = —(1 - w)[2(1 + B*)]uy 2(uf‘,+1+ J 1)
(4.1.15a)
and
k44 k
BB = 2(1 4+ B + B = —(1 — )21+ Bl — o (] + )
(4.1.15b)

with the optimum w being determined experimentally as appropriate for different phys-
ical problems.

4.1.3 DIRECT METHOD WITH GAUSSIAN ELIMINATION

Consider the simultaneous equations resulting from the finite difference approximation
of (4.1.2) in the form

kiiy + ks + - =g
ko) + kpur+ - =g

(4.1.16)
knlun. « " :gn

Here, our objective is to transform the system into an upper triangular array. To this
end, we choose the first row as the “pivot” equation and eliminate the u; term from
cach equation below it. To eliminate u; from the second equation, we multiply the first
equationby k»; / k1) and subtract it from the second equation. We continue similarly until
uy 1s eliminated from all equations. We then eliminate u,, u3, ... in the same manner
until we achieve the upper triangular form,

kipn ko - - uy g1
by | m| |82 (4.1.17)
krfm Un g,n

It is seen that backsubstitution will determine all unknowns.
An example for the solution of a typical elliptical equation is shown in Section 4.7.1.

4.2 PARABOLIC EQUATIONS

The governing equations for some problems in fluid dynamics, such as unsteady heat
conduction or boundary layer flows, are parabolic. The finite difference representation
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Figure 4.2.1 Fourier representation of the error on interval (—L, L). (a) Error distribution. (b) Maximum and
minimum wavelength.

of these equations may be represented in either explicit or implicit schemes, as illus-
trated below.

4.21 EXPLICIT SCHEMES AND VON NEUMANN STABILITY ANALYSIS

— . mom

Forward-Time/Centrai-Space (FTCS) Method

A typical parabolic equation is the unsteady diffusion problem characterized by
du  ’u
— —a— =0 421

ar  ax2 (42.1)

An explicit finite difference equation scheme for (4.2.1) may be written in the forward
difference in time and central difference in space (FTCS) as (see Figure 4.2.1a)

A R R Ly
LA S O(At, Ax? 422
N A + O( x°) (4.2.2a)

or

W =+ d(ul -2 +ul)) (4.2.2b)
where d is the diffusion number

aAr
d= —— 423

By definition, (4.2.2) is explicit because /"' at time step # + 1 can be solved explicitly
in terms of the known quantities at the previous time step n, thus called an explicit
scheme.

In order to determine the stability of the solution of finite difference equations, it is
convenient to expand the difference equation in a Fourier series. Decay or growth of an
amplification factor indicates whether or not the numerical algorithm is stable. This is
known as the von Neumann stability analysis [Ortega and Rheinbolt, 1970]. Assuming



4.2 PARABOLIC EQUATIONS

that at any time step n, the computed solution ! is the sum of the exact solution & and
error g

W) =u; + € (4.2.4)
and substituting (4.2.4) into (4.2.2a), we obtain

—n+1 — 5

up  —u; € *_8? Q o n n n
At + At (Ax )2( oy 20+l ) + W(Em —2e! +€,)
(4.2.5)
or
grtl —gr «
VR (Ax)z( =28 +ely) (4.2.6)
Writing (4.2.4) — (4.2.6) for the entire domain leads to
Urz — I‘Jn + Sn (427)
with
&'
g = g (4.2.8)
el
U e = (0" + &) (4.2.9)
= Ce” (4.2.10)
with
d (1-2d) d 0 0
C=14+d(E-2+ENH=]|. d (1 - 2d) d 0 (4.2.11)
0 d (1-2d) d
. : : - -

If the boundary conditions are considered as periodic, the error €” can be decom-
posed into a Fourier series in space at each time level n. The fundamental frequency
in a one-dimensional domain between —L and L (Figure 4.2.1) corresponds to the
maximum wave length of Apax = 2L. The wave number k = 2w /N becomes minimum
as kmin = w/ L, whereas the maximum wave number k.., is associated with the short-

est wavelength A on a mesh with spacing Ax corresponding to Amip, = 2Ax, leading to
kmax = T/Ax. Thus, the harmonics on a finite mesh are

ki = jkmin = jm/L= jm/(NAx), j=0,1,...N (4.2.12)

[¢)]
[{e]
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with Ax = L/N. The highest value of j is equal to the number of mesh intervals N.
Any finite mesh function, such as € or the full solution #}, can be decomposed into a
Fourier series

N N
= Tk (iA = ljiin/N
g{’? = E ) g’}’ elkiiax) _ E g?e jimf (4.2.13)

with I = +/—1, €” being the amplitude of the j harmonic, and the spatial phase angle
¢ is given as

b=k Ax = ju/N (4.2.14)

with & = 7 corresponding to the highest frequency resolvable on the mesh, namely the
frequency of the wavelength 2Ax. Thus

ef =y el (4.2.15)
j=—N
Substituting (4.2.15) into (4.2.6) yields

én—i—l _ é}’l

. o , . .
- e]t(b — sz (g”el(l+1)¢ _ 2{_—:11611(1) + gﬂef(l*l)(b)
gl g —de"(ef* -2+ %) =0 (4.2.16)

The computational scheme is said to be stable if the amplitude of any error harmonic
€" does not grow in time, that 1s, if the following ratio holds:

i+l

18l = =1 forall¢ (4.2.17)

where g = £ /g is the amplification factor, and is a function of time step At, frequency,
and the mesh size Ax. It follows from (4.2.16) that

g=1+d®—2+e'% (4.2.18a)
or

g=1-2d(1 —cosd) (4.2.18b)
Thus, the stability condition is

g=1 (4.2.19)
or

1—-2d(1 —cosd) = —1 (4.2.20)
Since the maximum of 1 — cos ¢ is 2, we arrive at, for stability,

0<d<1)2 (42.21)
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The von Neumann stability analysis shown above can be used to determine the
computational stability properties of other finite difference schemes to be discussed
subsequently.

OTHER EXPLICIT SCHEMES

Richardson Method
If the diffusion equation (4.2.1) is modeled by the form

ntl el q(u? = 20 4+ ul
U, ZAtut _ ( i+1 szt z—l)’ O(Atz’ sz) (4.2.22)

This ts known as the Richardson method and is unconditionally unstable.

Dufort-Frankel Method
The finite difference equation for this method is given by

AN S (4.2.23a)

or

(4.2.23b)

This scheme can be shown to be unconditionally stable by the von Neumann stability
analysis.

4.2.2 IMPLICIT SCHEMES

Laasonen Method

Contrary to the explicit schemes, the solution for implicit schemes involves the
variables at more than one nodal point for the time step (n + 1). For example, we
may write the difference equation for (4.2.1a) in the form

W et -2 )

i i i+1 2
= O(Ar, Ax 4224
At A x2 ’ ( ’ ) ( )

This equationis written for all grid pointsatn 4 1 time step, leading to a tridiagonal form.
The scheme given by (4.2.24) is known as the Laasonen method. This is unconditionally
stable.

Crank-Nicolson Method
An alternative scheme of (4.2.24) is to replace the diffusion term by an average
between n and n + 1,

1 +1 +1 +1
W —ul _ ¢ Wl = 2w + T i Wl — 2 +ul . O(A AX)
At 2 Ax? Ax?
(4.2.25)
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This may be rewritten as

A+ B=C+ D (4.2.26)
where
L 1
A= ui+2 —M:-T B = M’ZH—l _uf—'—l C = Ol(u:.’:l —ZM?+M?_+_1)
A2 Atj2 7 (Ax)?
el =2 )
(Ax)?

Note that A= C and B = D represent explicit and implicit scheme, respectively. This
scheme is known as the Crank-Nicolson method. It is seen that A= C is solved explic-
itlty for the time step n + 1/2 and the result is substituted into B = D. The scheme is
unconditionally stable.

[3-Method
A general form of the finite difference equation for (4.2.1) may be written as

oy _ B -2 ) (R -2 )]
ax) + (Ax) (4.2.27)

Af
This is known as the B-method. For 1/2 < 8 < 1, the method is unconditionally stable.
For B = 1/2, equation (4.2.27) reduces to the Crank-Nicolson scheme, whereas = 0
leads to the FTCS method.

A numerical example for the solution of a typical parabolic equation characterized

by Couette flow is presented in Section 4.7.2.

4.2.3 ALTERNATING DIRECTION IMPLICIT (ADY) SCHEMES

Let us now examine the solution of the two-dimensional diffusion equation,

2 2
LY G I W (4.2.28)
e \ax2 " 8y ) ’

with the forward difference in time and the central difference in space (FTCS). We write
an explicit scheme in the form

1 n
At Ax? Ay? ’ ' ’
(4.2.29)
It can be shown that the system is stable if
) 1 s
ditdy <5 (4.2.30)
Here, diffusion numbers d, and d, are defined as
At At
de =220 4, =200 (4.2.31)
Ax? Ay
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For simplicity, let d; = d, =d for Ax= Ay. This will give d <1 /4 for stability, which is
twice as restrictive. To avoid this restriction, consider an implicit scheme

a2 g o
— e =« s + L (4.2.32)
At Ax Ay
or
dadf})  +dad?); — Qe +2d, + VT dal ) dadt =, (4233)

This leads to a pentadiagonal system.
An alternative is to use the alternating direction implicit scheme, by splitting (4.2.25)
into two equatlons

1

1
n+i A+ n+ n—+
m. 2 —ut. u., > —2u. 2+ w!. . —2ut. 4+ u
i,j ij i+1,j U 1] ij+1 i,j ij—1
— 2 + 5 (4.2.34a)
At/2 Ax Ay
and
i ntl n+3 ntl
VAL T A T T T B, Vo SR oo
J i.j i+1,f ij i—-1,f i,j+1 1] i.j—1
— = q > + 5 (4.2.34b)
At/2 Ax Ay
This s heme is unconditionally stable. These two equations can be written in a tridiag-
el £ e L 11
onal form as follows:

A

1 1
—d Jf, +(1+ 2d1)u - dlu:fj = dotd oy + (1= 2o\t + doe]

Lj—1
implicit in x- dlrecnon explicit in;-direc[ion
(4.2.35a)
L 1
—dud! T+ (14 2t — d ot = diu :fj + (1= 2dpu +dl”} }
unknown known
(4.2.35b)
where
1 1 aAt
dl = SJUx = ‘a—
2 2 Ax?
1 1 aAt
dz = - y = - —
2 2 Ay?

Note that (4.2.35a} is implicit in the x-direction and explicit in the y-direction, known
as the x-sweep. The solution of (4.2.35a) provides the data for (4.2.35b) so that the
y-sweep can be carried out in which the solution is implicit in the y-direction and
explicit in the x-direction.

4.2.4 APPROXIMATE FACTORIZATION

The ADI formulation can be shown to be an approximate factorization of the Crank-
Nicolson scheme. To this end, let us write the Crank-Nicolson scheme for (4.2.25) in

~J
w
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the form
ufjllj — 2u”+1 + u;”ll] Wy ;= 2u} + W
Wl -, o« A2 t A
At ) +uﬁl1 2u,”+1 —{—uﬁll N w2+ ’
Ayz Ay2

O(AL2, Ax?, AY?) (4.2.36)
Introducing a compact notation,
u; j =i — 2ui ;Ui
Biui,j = U j1 — 2Uij + Wi j-1
we may rewrite (4.2.36) as

[1—;(.:1 82+d82)] w'th = [1+1

2

To compare (4.2.37) with the ADI formulation, we use (4.2.36) to rewrite the ADI
cquations as

(d. 8% + dy8§):| Ty (4.2.37)

n+y 2 n+3 2. n
u. 2yt ou. .’ o u
W b =a( i 4+ 2 ‘f\ (4.2.38a)
Al \ Ax? Ay*
> )
1
uttl gt 27 syt
i.j 1] x t] Y i]
LY LY E— 4.2.38b
Al i N + Ay? ( )
2
Rearranging (4.2.38a,b)
2 ”+2 1 2 n
(1 2d 82) Wt = (1 + 2d 82) WL (4.2.39b)

1
and eliminating «; ; between (4.2.392) and (4.2.39b),

1 1 1
(1 — idx&%) (1 — —d 62) Wit = (1 + 5 82) (1 + Edy8§) uf (4.2.40)
or
1 2 2 82 2 n+1 1 2 2 1 d 2a2 n
1—§(d8 +d8)+ dd 5 = 1+§(dx81+dy8y)+4—1dx ERANS
(4.2.41)

We note that, compared to (4.2.37), the additional term in (4.2.41)

d d, 8200 (s —u' ;)

i
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is smaller than the truncation error of (4.2.37). Thus, it is seen that the ADI formulation
is an approximate factorization of the Crank-Nicolson scheme.

4.2.5 FRACTIONAL STEP METHODS

An approximation of multidimensional problems similar to ADI or approximate
factorization schemes is also known as the method of fractional steps. This method
splits the multidimensional equations into a series of one-dimensional equations and
solves them sequentially. For example, consider a two-dimensional equation

au u azu\
— = — + — /4."3.4’1\
ar  \ax2 ' 3y2) v
The Crank-Nicolson scheme for (4.2.36) can be written in two steps:
I’I—i-l n ]’H—l n+l n_'_l
Wt -y a iy =21 + 1 ) 4 Uiy — 2 (4.2.43a)
At 2 Ax? Ax? o
2
I onty 1 1 1 nty ntyo )
wit = _« Wy — 20T it . o =2
At 2 Ay? Ay?
'"2_ A
+ O(AL?, Ax?, AY?) (4.2.43b)

This scheme is unconditionally stable.

4.2.6 THREE DIMENSIONS

The ADI method can be extended to three-space dimensions for the time intervals
n.n+1/3,n+2/3,and n + 1. Consider the unsteady diffusion problem,

du [9%u *u  u\
— = 42.44
ar ~ N\ tor Taz) (4.2.44)

The three-step FDM equations are written as

Lk Tk
AL/3

Vi k Lk
AyZ AZZ

. O(AL, AX?, AY?, AT

1
A+ 3 " 2, A+ 2 n 2 1
W je— Uik . ‘Sx”f,j.k 4 8y”‘i,j,k E’zr“i,j,k (4.2.45a)
At/3 Ax2 T Ay T A7 -
2 1 1 2 1
n+z n+1 43 n+3 n+3
M, 3~ 3 82u__3 azu.g 82L£w3
ijk gk _ | Lk 4 L.k 27 gk (4.2.45Db)
At/3 Ax? Ay? Az
\ 7
2 2 2
n+z n+3 n+3
't 3 (82u 3 &2y T3 82411

(4.2.45¢c)

~J
th
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This method is conditionally stable with (d, + d, + d;) < 3 /2 A more efficient method
may be derived using the Crank-Nicolson scheme

2 2y
u?.j.k—uzr'l,j.kz 18 z]k+8x ?]k_{_syzjk_l_azz]k
Ar 2 Ax? Ay? AZ?

l
2

ok 2, 2 2, 2
ui e — U7 15x Lokt z]k+18y oy tjk+82l]k
2 Ax? 2 Ay? AZ

1 2 2, 2,1
u:’-}-k_ul]k 18xz] szjk+18y Tjk—l_ayzjk_l_laz ?j +821]k
2 Ax? 2 Ay? 2 AZ?
(4.2.46)
In this scheme, the final solution ufﬂ( is obtained in terms of the intermediate steps

kandu”k

4.2.7 DIRECT METHOD WITH TRIDIAGONAL MATRIX ALGORITHM

Consider the implicit FDM discretization for the transient heat conduction equation in

the form,
Tt — 17
=1 ~ (T 2 T (4.2.47)

This may be rewritten as

a; T + b, T + 6T =g, (4.2.48)
with
a At 200At
a,=¢;, = — m, b,‘ =1+ W’ 8i= Tn (4249)

If Dirichlet boundary conditions are applied to this problem, we obtain the following
tridiagonal form, known as tridiagonal matrix algorithm (TDMA ) or Thomas algorithm
[Thomas, 1949]:

b o O ) _ _ - 'T?HT i

a by ¢ 0 [ g2

0 a3 by ¢z 0 - - T+ g3
* % k- - x =1 = (4.2.50)

% ok ok . * *

x % CNJ * *

Lo - - - anw bl [TV Lewid




An upper triangular form of the tridiagonal matrix may be obtained as follows:

bf=b,-—;—"cf1 i=2.3. .. NI

=g — ——gi1 i=2.3 . NI
bi_1
ENI
Iy = T—
bni
¢l .
T=81"0000 N1 NT=2,.. 1
bj
It should be noted that Neumann boundary conditions can also be accommodated

mnto this algorithm with the tridiagonal form still maintained.

4.3 HYPERBOLIC EQUATIONS

Hyperbolic equations, in general, represent wave propagation. They are given by either
first order or second order differential equations, which may be approximated in either
explicit or implicit forms of finite difference equations. Various computational schemes
are examined below.

43.1 EXPLICIT SCHEMES AND VON NEUMANN STABILITY ANALYSIS

Euler’s Forward Time and Forward Space (FTFS) Approximations

Consider the first order wave equation (Euler equation) of the form

u au

ar ta ax
The Euler’s forward time and forward space approximation of (4.3.1) is written in the
FTFS scheme as

Wit u', . —u”
S Rt 2 S (4.32)
At Ax

It follows from (4.2.15) and (4.3.2) that the amplification factor assumes the form

=0, a>0 (4.3.1)

g=1-C(!®*-1)=1-C(cosd—1) — ICsindp =1+ 2Csin? % —ICsind  (4.3.3)

with C being the Courant number or CFL number [Courant, Friedrichs, and Lewy,
1967,
anNt
T Ax
and

gl’=gg —(1-|—2Csm2 w) + C%sin’ ¢_1+4C(1—C)sm 5 > 1 (4.3.4)

where g* is the complex conjugate of g. Note that the criterion |g| < 1 for all values of
& can not be satisfied (|g| lies outside the unit circle for all values of ¢, Figure 4.3.1).
Therefore, the explicit Euler scheme with FTFS is unconditionally unstable.
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